

Sydney Girls High School

2021 Alternate Task 4

Mathematics Extension 1

General	• Reading time – 5 minutes
Instructions	• Working time – 60 minutes
	• Write using a black pen
	• Calculators approved by NESA may be used
	• A NESA reference sheet has been provided for use
	• For questions in Section II, show relevant mathematical reasoning
	and/or calculations
Total marks : 40	 Section 1 – 10 marks (pages 2 – 6) Attempt Questions 1 – 10 Allow about 15 minutes for this section
	Section II – 30 marks (pages 7 – 12)
	• Attempt Questions 11 – 13
	• Allow about 45 minutes for this section

THIS IS NOT A TRIAL PAPER

It does not reflect the format or the content of the 2021 HSC Examination paper

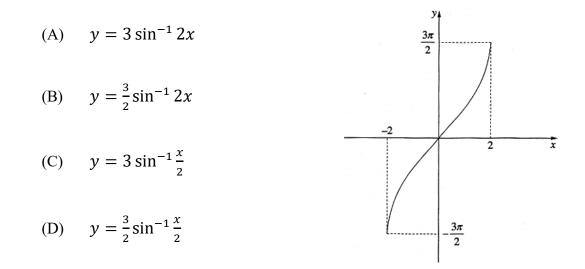
in this subject.

Section I 10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

For each question, select the correct response A, B, C or D.

List the correct response only on YOUR writing paper for questions 1 - 10.

1. Which function best describes the following graph?



- 2. In the cartesian plane, a vector perpendicular to the line 3x + 2y + 1 = 0 is
 - (A) 3i + 2j
 - (B) $-\frac{1}{2}i + \frac{1}{3}j$
 - (C) 2i 3j
 - (D) $\frac{1}{2}\dot{i} \frac{1}{3}\dot{j}$

3. Which group of three numbers could be the roots of the polynomial equation

 $x^3 + px^2 - 26x + 24 = 0?$

- (A) 2, 3, 4
- (B) 1, -6, 4
- (C) -1, -2, 12

(D)
$$-1, -3, -8$$

4.

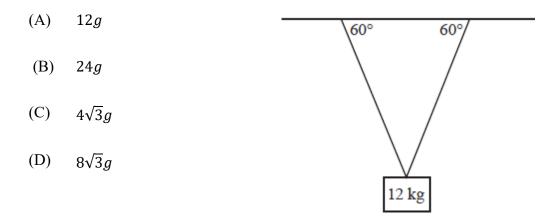
$$\frac{\cot\frac{\theta}{2} - \tan\frac{\theta}{2}}{\cot\frac{\theta}{2} + \tan\frac{\theta}{2}} =$$
(A) $\cos\theta$
(B) $\sec\theta$
(C) $\tan\theta$

- (D) $\cot \theta$
- 5. Which expression is equal to $\int \cos^2 \frac{2x}{5} dx$?
 - (A) $\frac{x}{2} \frac{2}{5}\sin\frac{4x}{5} + C$
 - (B) $\frac{x}{2} + \frac{2}{5}\sin\frac{4x}{5} + C$
 - (C) $\frac{x}{2} \frac{5}{8}\sin\frac{4x}{5} + C$

(D)
$$\frac{x}{2} + \frac{5}{8}\sin\frac{4x}{5} + C$$

- 6. In the expression $(2x + k)^6$ the coefficients of x and x^2 are equal. What is the value of k?
 - (A) 5
 - (B) 6
 - (C) 11
 - (D) 12
- 7. A group consisting of two adults, two boys and two girls is to be seated at a round table. The adults are to be seated together. The boys and girls are to sit in alternating positions? How many different seating arrangements are possible?
 - (A) 8
 - (B) 16
 - (C) 24
 - (D) 30

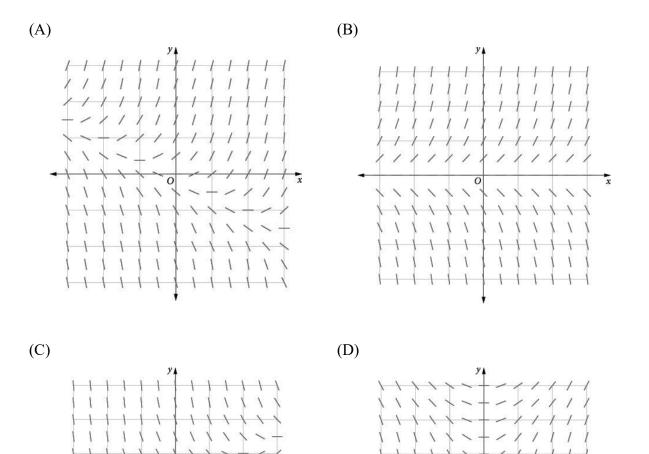
8. A 12kg mass is suspended in equilibrium from a horizontal ceiling by two identical light strings. Each string makes an angle of 60° with the ceiling, as shown. If the force of gravity is $g \text{ m/s}^2$ then the magnitude, in newtons, of the tension in each string is equal to:



9. The volume V of a spherical balloon of radius r mm is increasing at a constant rate of 800 mm³ per second. What is the rate of change of the radius with respect to time?

(A)
$$\frac{\pi r}{100}$$
 mm/second
(B) $\frac{100}{\pi r}$ mm/second
(C) $\frac{\pi r^2}{200}$ mm/second
(D) $\frac{200}{\pi r^2}$ mm/second

10. Which of the following direction fields could have the differential equation $\frac{dy}{dx} = x - ky$ as a solution if k > 0?



x

1

0

1

/

1

1

x

ï

0

١

Section II

30 marks Attempt Questions 11 – 13 Allow about 45 minutes for this section

Begin a new page for each question.

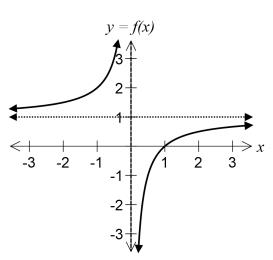
Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 Begin a new Page (10 marks)		
(a)		
	(i) Show that $(x-3)$ is a factor of the polynomial	1
	$P(x) = x^3 - 4x^2 + x + 6.$	1
	(ii) Hence, express $P(x)$ in factored form.	2
(b)	Evaluate $\lim_{x \to 0} \left(\frac{\sin \frac{x}{3}}{4x} \right)$	1
(c)	Solve: $\frac{x^2 - 9}{3x} > 0$	2
(d)	Evaluate:	2
	$\int \frac{2x}{\sqrt{25-x^2}} dx$	

Question 11 continues on the next page.

Question 11 (continued)

(e) Consider the function $f(x) = \frac{x-1}{x}$, which is graphed below:



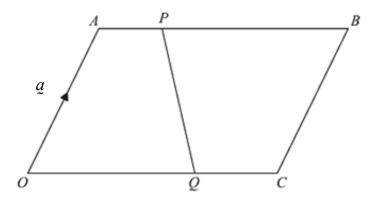
Using the graph of y = f(x), sketch the function $y = \{f(x)\}^2$.

2

End of Question 11

(a) In the diagram below, *OABC* is a parallelogram. $\overrightarrow{OA} = a$ and $\overrightarrow{OC} = c$ *P* is the point on *AB* such that $AP = \frac{1}{4}AB$. *Q* is the point on *OC* such that $OQ = \frac{2}{3}OC$.

Find \overrightarrow{PQ} in terms of \underline{a} and \underline{c} , giving your answer in simplest form.



(b) Find the volume, in terms of π , of the solid formed when the area bounded by the curve $y = \frac{1}{2} \log_e x$, the lines y = -1, y = 2 and the y-axis is rotated about the y-axis.

Question 12 continues on the next page.

Question 12 (continued)

- (c) Consider the expansion of $(1+x)^{n-1}$ for integers n > 2.
 - (i) Show that:

$$n\binom{n-1}{1} + n\binom{n-1}{2} + \dots + n\binom{n-1}{n-2} = n(2^{n-1}-2)$$
3

(ii) Find the smallest positive integer *n* such that:

$$n\binom{n-1}{1} + n\binom{n-1}{2} + \dots + n\binom{n-1}{n-2} > 5000$$
 1

End of Question 12

(a) A particle is moving in a straight line and is oscillating backwards and forwards. At time *t* seconds, it has displacement *x* metres from a fixed point *O* on the line, where $x = A \cos\left(\frac{\pi}{4}t + \alpha\right)$, A > 0, and $0 < \alpha < \frac{\pi}{2}$. After 1 second the particle is 2 metres to the right of *O*, and after 3 seconds it is 4 metres to the left of *O*.

Given that $A\cos\alpha - A\sin\alpha = 2\sqrt{2}$ and $A\cos\alpha + A\sin\alpha = 4\sqrt{2}$:

- (i) Solve the equations simultaneously, to find the values of A and α in exact form.
- (ii) Show that the particle first passes through *O* after $\frac{4}{\pi} \tan^{-1}3$ seconds. 2

Question 13 continues on the next page.

Question 13 (continued)

(b) The position coordinates of any point on the path of a projectile at time $t \ge 0$ in seconds, with initial velocity $v \text{ ms}^{-1}$ at an angle of projection θ , and acceleration downwards due to gravity, *g*, are:

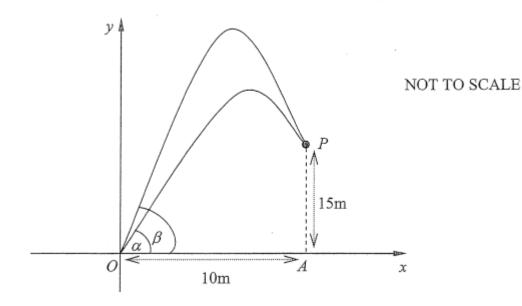
$$x = vt\cos\theta$$
 and $y = vt\sin\theta - \frac{1}{2}gt^2$

(i) Show that the equation of the path of a projectile is given by:

$$y = x \tan \theta - \frac{gx^2}{2v^2} \sec^2 \theta$$

Harry throws a tennis ball from a fixed point *O* on level ground, with a velocity $v = 7\sqrt{10} \text{ ms}^{-1}$ at an angle β with the horizontal. Shortly afterwards he throws another tennis ball from the same point at the same speed but at a different angle to the horizontal, α , where $\alpha < \beta$ as shown.

The two tennis balls collide at a point *P*, vertically above the point *A* on the ground, where OA = 10 m and AP = 15 m. The acceleration downwards due to gravity is g = 9.8 ms⁻².



(ii) Show that $\tan \alpha = 2$ and $\tan \beta = 8$.

(iii) Find, in surd form, the time elapsed between when the tennis balls were thrown.

End of paper

2

Sydney Girls High School

2021 Alternate Task 4

Mathematics Extension 1

General Reading time -5 minutes • **Instructions** Working time -60 minutes • • Write using a black pen • Calculators approved by NESA may be used • A NESA reference sheet has been provided for use • For questions in Section II, show relevant mathematical reasoning and/or calculations **Section 1 – 10 marks** (pages **2–** 6) **Total marks : 40** Attempt Questions 1 - 10 Allow about 15 minutes for this section Section II – 30 marks (pages 7 – 12) • Attempt Questions 11 – 13 Allow about 45 minutes for this section

THIS IS NOT A TRIAL PAPER

It does not reflect the format or the content of the 2021 HSC Examination paper

in this subject.

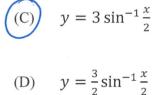
2021 Extens	ion 1 Task 4
Multi	ple Choice
1. C	6. A
2. A	7.B
3.B	8. C
4.A	9. D
5.D	10.C

Section I 10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

For each question, select the correct response A, B, C or D.

List the correct response only on YOUR writing paper for questions 1 - 10.

- 1. Which function best describes the following graph?
 - (A) $y = 3\sin^{-1}2x$
 - (B) $y = \frac{3}{2}\sin^{-1}2x$





 $D: -1 \leq \frac{\chi}{2} \leq 1$ $-2 \leq \chi \leq 2.$

R: -프 (의)=프

 $-3\pi \leq y \leq 3\pi$

2. In the cartesian plane, a vector perpendicular to the line 3x + 2y + 1 = 0 is

(A) $3\underline{i}+2\underline{j}$ (B) $-\frac{1}{2}\underline{i}+\frac{1}{3}\underline{j}$ (C) $2\underline{i}-3\underline{j}$ (D) $\frac{1}{2}\underline{i}-\frac{1}{3}\underline{j}$ 3x+2y+1=0: 2y=-3x-1 $y=-\frac{3}{2}x-\frac{1}{2}$ $M_{\ell}=-\frac{3}{2}$ $M_{\ell}=-\frac{3}{2}$ $m_{\ell}=\frac{2}{3}$ $m_{\ell}=\frac{2}{3}$ $m_{\ell}=\frac{2}{3}$ $m_{\ell}=\frac{2}{3}$ $m_{\ell}=\frac{2}{3}$ $m_{\ell}=\frac{2}{3}$

:. 3 × + 2 j

-2-

- 3. Which group of three numbers could be the roots of the polynomial equation
 - $x^{3} + px^{2} 26x + 24 = 0?$ (A) 2,3,4 (B) 1,-6,4 (C) -1,-2,12 (D) -1,-3,-8 $x^{3} + px^{2} - 26x + 24 = 0.$ (A) 2,3,4 $x^{3} + px^{2} - 26x + 24 = 0.$ (A) 2,3,4 $x^{3} + px^{2} - 26x + 24 = 0.$ (A) 2,3,4 $x^{3} + px^{2} - 26x + 24 = 0.$ (A) 2,3,4 $x^{3} + px^{2} - 26x + 24 = 0.$ (B) -1,-6,4 (C) -1,-2,12 (D) -1,-3,-8 (D)

.:(B)

$$\frac{\theta}{2} - \tan \frac{\theta}{2} = \frac{1}{2} + \tan \frac{\theta}{2} = \frac{1}{2} + \frac{1}{2} +$$

5. Which expression is equal to $\int \cos^2 \frac{2x}{5} dx$?

4.

cot-

cot-

(A)

(B)

(C)

(D)

(A) $\frac{x}{2} - \frac{2}{5} \sin \frac{4x}{5} + C$ (B) $\frac{x}{2} + \frac{2}{5} \sin \frac{4x}{5} + C$ (C) $\frac{x}{2} - \frac{5}{8} \sin \frac{4x}{5} + C$ (D) $\frac{x}{2} + \frac{5}{8} \sin \frac{4x}{5} + C$ (D) $\frac{x}{4} + \frac{5}{8} \sin \frac{4x}{5} + C$ (D)

- 6. In the expression $(2x + k)^6$ the coefficients of x and x^2 are equal. What is the value of k?

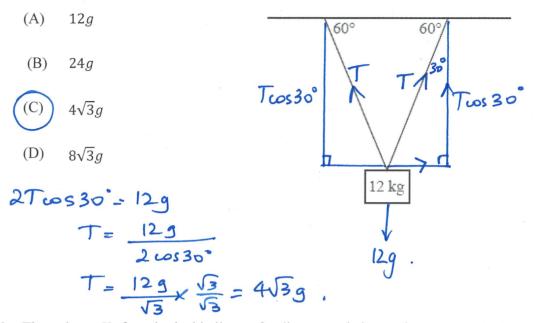
 $k = \frac{6C_{q} \times 2}{6C_{c}} = \frac{30}{6} : k = 5$

7. A group consisting of two adults, two boys and two girls is to be seated at a round table. The adults are to be seated together. The boys and girls are to sit in alternating positions? How many different seating arrangements are possible?

2 Adults Zgirls 2 boys

-4-

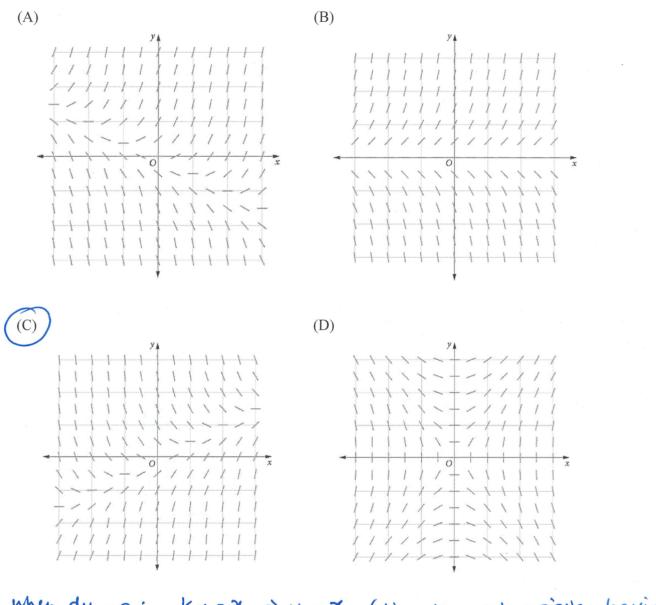
8. A 12kg mass is suspended in equilibrium from a horizontal ceiling by two identical light strings. Each string makes an angle of 60° with the ceiling, as shown. If the force of gravity is $g \text{ m/s}^2$ then the magnitude, in newtons, of the tension in each string is equal to:



9. The volume V of a spherical balloon of radius r mm is increasing at a constant rate of 800 mm^3 per second. What is the rate of change of the radius with respect to time?

		dV = 800 mm3/second. Find dr.
(A)	$\frac{\pi r}{100}$ mm/second	dt $V = \frac{4}{3} \pi r^3$ dt
(B)	$\frac{100}{\pi r}$ mm/second	$V = \frac{4}{3} \pi r^{3}$ $\frac{dV}{dr} = 4\pi r^{2}.$
(C)	$\frac{\pi r^2}{200}$ mm/second	$\frac{dr}{dt} = \frac{dV}{dt} \times \frac{dr}{dv}$
(D)	$\frac{200}{\pi r^2}$ mm/second	$= 800 \times \frac{1}{4\pi r^2}$
		$=\frac{200}{\pi r^2} mm/s$

10. Which of the following direction fields could have the differential equation $\frac{dy}{dx} = x - ky$ as a solution if k > 0?



when $\frac{dy}{dx} = 0$: $ky = x \Rightarrow y = \frac{x}{k}$ (line through origin, having horizontal line elements. $\dots \text{ not } \widehat{\mathbb{B}} \text{ and } \text{ not } \widehat{\mathbb{D}}$.

But
$$k = 70$$
, $\therefore y = \frac{2e}{k}$.

Question 11 Begin a new Page

(10 marks)

1

2

(a)

(i) Show that (x-3) is a factor of the polynomial

 $P(x) = x^3 - 4x^2 + x + 6.$

(ii) Hence, express P(x) in factored form.

i)
$$P(3) = 3^{3} - 4(3)^{2} + 3 + 6$$

 $\therefore P(3) = 0$.
ii) $\frac{x^{2} - x - 2}{x - 3)x^{3} - 4x^{2} + x + 6}$
 $\frac{x^{3} - 3x^{2}}{-x^{2} + x}$
 $-x^{2} + 3x$
 $-2x + 6$
 $2x + 6$

1

$$P(x) = (x-3)(x^2 - x - 2)$$

$$P(x) = (x-3)(x-2)(x+1) \quad \checkmark \quad (2)$$

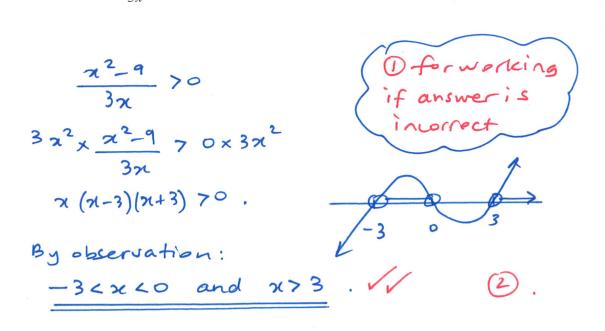
(b) Evaluate
$$\lim_{x \to 0} \left(\frac{\sin \frac{x}{3}}{4x} \right)$$

$$\lim_{x \to 0} \left(\frac{5M \frac{x}{3}}{4x} \right)$$

$$= \lim_{x \to 0} \left(\frac{5M \frac{x}{3}}{\frac{x}{3}} \right) \times \frac{\left(\frac{x}{3}\right)}{4n}$$

$$= 1 \times \frac{x}{3} \times \frac{1}{4x}$$

$$= \frac{1}{12}$$



2

2

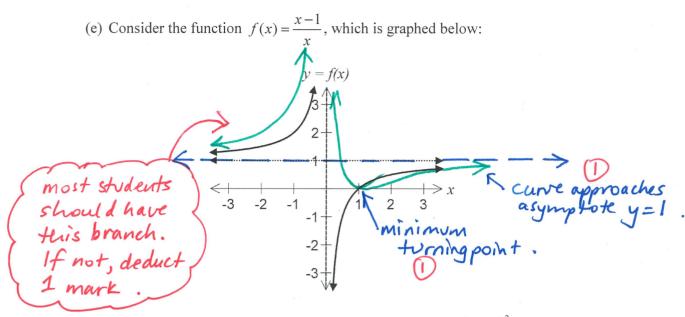
(d) Evaluate:

(c) Solve: $\frac{x^2 - 9}{3x} > 0$

 $\int \frac{2x}{\sqrt{25-x^2}} dx$

 $\int \frac{2\pi}{\sqrt{2} C \pi^2} d\pi .$ = $(2\pi.(25-\pi^2)^{-\frac{1}{2}} d\pi)$ $= -\frac{1}{\frac{1}{2}} \left(25 - \pi^2\right)^{\frac{1}{2}} + C \quad (reverse chain rule).$ $= -2\sqrt{25-\chi^2} + C$ 2)

Question 11 (continued)



Using the graph of y = f(x), sketch the function $y = \{f(x)\}^2$.

2

End of Question 11

Question 12 Begin a new page.

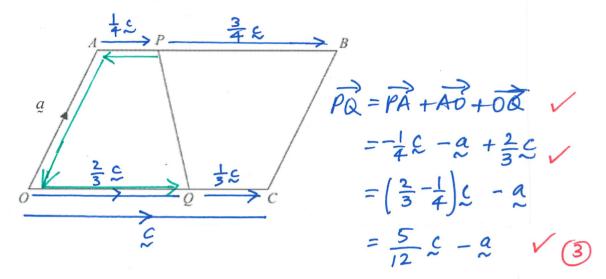
(10 marks)

3

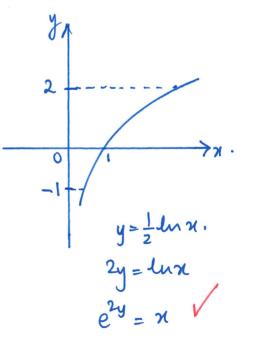
3

(a) In the diagram below, *OABC* is a parallelogram. $\overrightarrow{OA} = \underline{a}$ and $\overrightarrow{OC} = \underline{c}$ *P* is the point on *AB* such that $AP = \frac{1}{4}AB$. *Q* is the point on *OC* such that $OQ = \frac{2}{3}OC$.

Find \overrightarrow{PQ} in terms of \underline{a} and \underline{c} , giving your answer in simplest form.



(b) Find the volume, in terms of π , of the solid formed when the area bounded by the curve $y = \frac{1}{2}\log_e x$, the lines y = -1, y = 2 and the y-axis is rotated about the y-axis.



$$V = \pi \int_{a}^{b} x^{2} dy$$

= $\pi \int_{-1}^{2} (e^{2y})^{2} dy$ V
= $\pi \int_{-1}^{2} e^{4y} dy$
= $\left[\frac{e^{4y}}{4}\right]_{-1}^{2} \times \pi$
V = $\left(\frac{e^{8}}{4} - \frac{e^{-4}}{4}\right)\pi$ units³.

Question 12 (continued)

- (c) Consider the expansion of $(1+x)^{n-1}$ for integers n > 2.
 - (i) Show that:

$$n\binom{n-1}{1} + n\binom{n-1}{2} + \dots + n\binom{n-1}{n-2} = n(2^{n-1}-2)$$
3

(ii) Find the smallest positive integer *n* such that:

$$n\binom{n-1}{1} + n\binom{n-1}{2} + \dots + n\binom{n-1}{n-2} > 5000$$

$$\dot{x} \left(\left| + \pi \right\rangle^{n-1} = \left| + \binom{n-1}{l} \pi + \binom{n-1}{2} \pi^{2} + \dots + \binom{n-1}{n-2} \pi^{n-2} + \pi^{n-1} \right|$$

Let
$$n=1$$
:
 $(1+i)^{n-i} = 1 + {\binom{n-i}{i}} + {\binom{n-i}{2}} + \cdots + {\binom{n-i}{n-2}} + 1$
 $2^{n-i} = 2 + {\binom{n-i}{i}} + {\binom{n-i}{2}} + \cdots + {\binom{n-i}{n-2}}$
 $2^{n-i} - 2 = {\binom{n-i}{i}} + {\binom{n-i}{2}} + \cdots + {\binom{n-i}{n-2}}$
 $n (2^{n-i} - 2) = n \left[{\binom{n-i}{i}} + {\binom{n-i}{2}} + \cdots + {\binom{n-i}{n-2}} \right]$
 $\therefore n {\binom{n-i}{i}} + n {\binom{n-i}{2}} + n {\binom{n-i}{3}} + \cdots + n {\binom{n-i}{n-2}} = n (2^{n-i} - 2).$
(3)

ii) Solve
$$n(2^{n-1}-2)$$
? 5000
Use trial and error:
 $n=8:$ $8(2^{7}-2)=1008$
 $n=9:$ $9(2^{8}-2)=2286$
 $n=10:$ $10(2^{9}-2)=5100$ -- $n=10$

- 10 -

(a) A particle is moving in a straight line and is oscillating backwards and forwards. At time *t* seconds, it has displacement *x* metres from a fixed point *O* on the line, where x = A cos (π/4 t + α), A > 0, and 0 < α < π/2. After 1 second the particle is 2 metres to the right of *O*, and after 3 seconds it is 4 metres to the left of *O*.

Given that $A\cos\alpha - A\sin\alpha = 2\sqrt{2}$ and $A\cos\alpha + A\sin\alpha = 4\sqrt{2}$:

- (i) Solve the equations simultaneously, to find the values of A and α in exact form.
- (ii) Show that the particle first passes through O after $\frac{4}{\pi} \tan^{-1}3$ seconds.
- i) $A \cos d A \sin d = 2\sqrt{2} \dots 0$ $A \cos d + A \sin d = 4\sqrt{2} \dots 0$ 0 + 2; $2A \cos d = 6\sqrt{2} \Rightarrow A \cos d = 3\sqrt{2}$ $@ -0: 2A \sin d = 2\sqrt{2} \Rightarrow A \sin d = \sqrt{2}$ $\therefore A^{2} (\cos^{2} d + \sin^{2} d) = (3\sqrt{2})^{2} + (\sqrt{2})^{2}$ $A^{2} = 20$ $A = 2\sqrt{5}, A > 0.$ $\frac{A \sin d}{A \cos d} = \frac{\sqrt{2}}{3\sqrt{2}}$ $\therefore \tan d = \frac{1}{3}$ $d = \tan^{-1} \frac{1}{3} (0 \le d \le T)$

2

ii) When
$$x \ge 0$$
: $\cos\left(\frac{\pi}{4}t + \alpha\right) = 0$
 $t \ge 0$: $\frac{\pi}{4}t + \alpha = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \cdots$
First such t>0: $\frac{\pi}{4}t = \frac{\pi}{2} - \alpha$ 1 $t = \frac{\pi}{4} - \frac{1}{3}$
 $\frac{\pi}{4}t = \frac{\pi}{2} - \tan^{-1} \frac{1}{3}$
 $\frac{\pi}{4}t = \tan^{-1} \frac{3}{3}$
 $\frac{\pi}{4}t = \tan^{-1} \frac{3}{3}$
 $\frac{\pi}{4}t = \tan^{-1} \frac{3}{3}$

Question 13 (continued)

(b) The position coordinates of any point on the path of a projectile at time $t \ge 0$ in seconds, with initial velocity $v \text{ ms}^{-1}$ at an angle of projection θ , and acceleration downwards due to gravity, g, are:

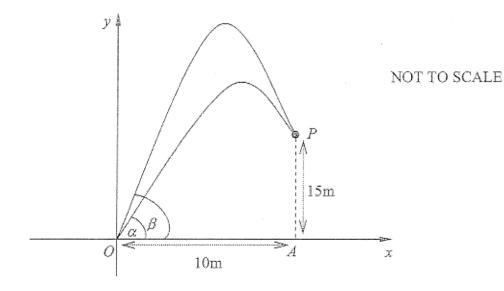
$$x = vt\cos\theta$$
 and $y = vt\sin\theta - \frac{1}{2}gt^2$

(i) Show that the equation of the path of a projectile is given by:

$$y = x \tan \theta - \frac{gx^2}{2v^2} \sec^2 \theta$$

Harry throws a tennis ball from a fixed point *O* on level ground, with a velocity $v = 7\sqrt{10} \text{ ms}^{-1}$ at an angle β with the horizontal. Shortly afterwards he throws another tennis ball from the same point at the same speed but at a different angle to the horizontal, α , where $\alpha < \beta$ as shown.

The two tennis balls collide at a point *P*, vertically above the point *A* on the ground, where OA = 10 m and AP = 15 m. The acceleration downwards due to gravity is g = 9.8 ms⁻².



(ii) Show that $\tan \alpha = 2$ and $\tan \beta = 8$.

(iii) Find, in surd form, the time elapsed between when the tennis balls were thrown.

End of paper

2

b) i)
$$x = vt\cos\theta$$
 and $y = vt\sin\theta - \frac{1}{2}gt^2$
 $\Rightarrow t = \frac{\pi}{v\cos\theta}$ subinto $y:$
 $y = (v\sin\theta) \cdot \frac{\pi}{v\cos\theta} - \frac{1}{2}g\left(\frac{\pi}{v\cos\theta}\right)^2$
 $y = \pi \tan\theta - \frac{g\pi^2}{2v^2\cos^2\theta}$
 $y = \pi \tan\theta - \frac{g\pi^2}{2v^2} \sec^2\theta$. (2)

in') Consider the two paths and find the time travelled to reach P:

Tennis ball 1: V=7VID, O=B, tanB=8 and x=10:

$$t_{1} = \frac{10}{7\sqrt{10} \cos\beta}$$

$$= \frac{10 \sec\beta}{7\sqrt{10}} \left(\sec^{2}\beta = 1 + \tan^{2}\beta \right)$$

$$= \frac{10 \times \sqrt{65}}{7\sqrt{10}} \left(\sec^{2}\beta = 1 + 8^{2} \right)$$

$$= \frac{10 \times \sqrt{65}}{7\sqrt{10}} \sqrt{\frac{1}{progress towards a solution}}.$$

Tennis ball 2: V=7JIO, O=x, tan x=2 and x=10:

$$t_{2} = \frac{10}{7\sqrt{10} \cos d}$$

$$= \frac{10 \sec d}{7\sqrt{10}} \qquad \left(\frac{\sec^{2} a = 1 + \tan^{2} a}{\sec^{2} a = 1 + 4} \right)$$

$$= \frac{10\sqrt{5}}{7\sqrt{10}}$$

$$= \frac{\sqrt{50}}{7}$$

$$\therefore time elapsed: t_{1} - t_{2} = \frac{\sqrt{650} - \sqrt{50}}{7} \qquad seconds.$$

$$7 \qquad (2)$$